Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs

نویسندگان

  • Feng-Xia Tian
  • Jian-Lei Zang
  • Tan Wang
  • Yu-Li Xie
  • Jin Zhang
  • Jian-Jun Hu
چکیده

Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Wide Identification, Evolutionary Expansion, and Expression Profile of Homeodomain-Leucine Zipper Gene Family in Poplar (Populus trichocarpa)

BACKGROUND Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus f...

متن کامل

Production of Recombinant Proline Dehydrogenase Enzyme from Pseudomonas fluorescens pf-5 in E. coli System

Proline dehydrogenase (ProDH; 1.5.99.8) belongs to superfamily of amino acid dehydrogenase, which plays a significant role in the metabolic pathway from proline to glutamate. The goal of this research was gene cloning and characterization of ProDH enzyme from Pseudomonas fluorescens pf-5 strain. The gene encoding ProDH was isolated by means of PCR amplification and cloned in an IPTG inducible T...

متن کامل

Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton.

In plants, aldehyde dehydrogenases (ALDHs) function as 'aldehyde scavengers' by removing reactive aldehydes and thus play important roles in stress responses. To date, 30 ALDHs have been identified in Gossypium raimondii, whereas ALDHs have not been studied in Gossypium arboreum or in tetraploid cotton. In this study, we identified 30, 59 and 59 aldehyde dehydrogenase (ALDH) genes from G. arbor...

متن کامل

Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa).

Aldehyde dehydrogenase (ALDH) superfamily represents a group of NAD(P)(+)-dependent enzymes that catalyze the oxidation of endogenous and exogenous aldehydes to the corresponding carboxylic acids. A total of twenty ALDH genes were identified in the rice genome. They were grouped into 10 distinct families based on protein sequence identity. The whole genome duplication (WGD) predating the diverg...

متن کامل

Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily

Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015